Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(11): e4792, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774136

RESUMO

Advances in computational tools for atomic model building are leading to accurate models of large molecular assemblies seen in electron microscopy, often at challenging resolutions of 3-4 Å. We describe new methods in the UCSF ChimeraX molecular modeling package that take advantage of machine-learning structure predictions, provide likelihood-based fitting in maps, and compute per-residue scores to identify modeling errors. Additional model-building tools assist analysis of mutations, post-translational modifications, and interactions with ligands. We present the latest ChimeraX model-building capabilities, including several community-developed extensions. ChimeraX is available free of charge for noncommercial use at https://www.rbvi.ucsf.edu/chimerax.


Assuntos
Software , Microscopia Crioeletrônica/métodos , Funções Verossimilhança , Modelos Moleculares , Microscopia Eletrônica , Conformação Proteica
2.
Protein Sci ; 30(1): 70-82, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32881101

RESUMO

UCSF ChimeraX is the next-generation interactive visualization program from the Resource for Biocomputing, Visualization, and Informatics (RBVI), following UCSF Chimera. ChimeraX brings (a) significant performance and graphics enhancements; (b) new implementations of Chimera's most highly used tools, many with further improvements; (c) several entirely new analysis features; (d) support for new areas such as virtual reality, light-sheet microscopy, and medical imaging data; (e) major ease-of-use advances, including toolbars with icons to perform actions with a single click, basic "undo" capabilities, and more logical and consistent commands; and (f) an app store for researchers to contribute new tools. ChimeraX includes full user documentation and is free for noncommercial use, with downloads available for Windows, Linux, and macOS from https://www.rbvi.ucsf.edu/chimerax.


Assuntos
Gráficos por Computador , Imageamento Tridimensional , Modelos Moleculares , Software
3.
Protein Sci ; 27(1): 14-25, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28710774

RESUMO

UCSF ChimeraX is next-generation software for the visualization and analysis of molecular structures, density maps, 3D microscopy, and associated data. It addresses challenges in the size, scope, and disparate types of data attendant with cutting-edge experimental methods, while providing advanced options for high-quality rendering (interactive ambient occlusion, reliable molecular surface calculations, etc.) and professional approaches to software design and distribution. This article highlights some specific advances in the areas of visualization and usability, performance, and extensibility. ChimeraX is free for noncommercial use and is available from http://www.rbvi.ucsf.edu/chimerax/ for Windows, Mac, and Linux.


Assuntos
Imageamento Tridimensional , Software , Estrutura Molecular
4.
Nucleic Acids Res ; 42(Web Server issue): W478-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24861624

RESUMO

Integrating access to web services with desktop applications allows for an expanded set of application features, including performing computationally intensive tasks and convenient searches of databases. We describe how we have enhanced UCSF Chimera (http://www.rbvi.ucsf.edu/chimera/), a program for the interactive visualization and analysis of molecular structures and related data, through the addition of several web services (http://www.rbvi.ucsf.edu/chimera/docs/webservices.html). By streamlining access to web services, including the entire job submission, monitoring and retrieval process, Chimera makes it simpler for users to focus on their science projects rather than data manipulation. Chimera uses Opal, a toolkit for wrapping scientific applications as web services, to provide scalable and transparent access to several popular software packages. We illustrate Chimera's use of web services with an example workflow that interleaves use of these services with interactive manipulation of molecular sequences and structures, and we provide an example Python program to demonstrate how easily Opal-based web services can be accessed from within an application. Web server availability: http://webservices.rbvi.ucsf.edu/opal2/dashboard?command=serviceList.


Assuntos
Estrutura Molecular , Software , Internet , Modelos Moleculares
5.
J Struct Biol ; 179(3): 269-78, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21963794

RESUMO

Structural modeling of macromolecular complexes greatly benefits from interactive visualization capabilities. Here we present the integration of several modeling tools into UCSF Chimera. These include comparative modeling by MODELLER, simultaneous fitting of multiple components into electron microscopy density maps by IMP MultiFit, computing of small-angle X-ray scattering profiles and fitting of the corresponding experimental profile by IMP FoXS, and assessment of amino acid sidechain conformations based on rotamer probabilities and local interactions by Chimera.


Assuntos
Simulação por Computador , Modelos Moleculares , Software , Sequência de Aminoácidos , Animais , Bovinos , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Substâncias Macromoleculares/química , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/química , Espalhamento a Baixo Ângulo , Homologia Estrutural de Proteína , Difração de Raios X
6.
Nucleic Acids Res ; 39(Database issue): D465-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097780

RESUMO

ModBase (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by ModPipe, an automated modeling pipeline that relies primarily on Modeller for fold assignment, sequence-structure alignment, model building and model assessment (http://salilab.org/modeller/). ModBase currently contains 10,355,444 reliable models for domains in 2,421,920 unique protein sequences. ModBase allows users to update comparative models on demand, and request modeling of additional sequences through an interface to the ModWeb modeling server (http://salilab.org/modweb). ModBase models are available through the ModBase interface as well as the Protein Model Portal (http://www.proteinmodelportal.org/). Recently developed associated resources include the SALIGN server for multiple sequence and structure alignment (http://salilab.org/salign), the ModEval server for predicting the accuracy of protein structure models (http://salilab.org/modeval), the PCSS server for predicting which peptides bind to a given protein (http://salilab.org/pcss) and the FoXS server for calculating and fitting Small Angle X-ray Scattering profiles (http://salilab.org/foxs).


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas de Bactérias/química , Gráficos por Computador , Peptídeos/química , Mapeamento de Interação de Proteínas , Proteínas/química , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Software , Homologia Estrutural de Proteína , Interface Usuário-Computador , Difração de Raios X
7.
RNA ; 15(6): 1219-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19369428

RESUMO

With an increasing interest in RNA therapeutics and for targeting RNA to treat disease, there is a need for the tools used in protein-based drug design, particularly DOCKing algorithms, to be extended or adapted for nucleic acids. Here, we have compiled a test set of RNA-ligand complexes to validate the ability of the DOCK suite of programs to successfully recreate experimentally determined binding poses. With the optimized parameters and a minimal scoring function, 70% of the test set with less than seven rotatable ligand bonds and 26% of the test set with less than 13 rotatable bonds can be successfully recreated within 2 A heavy-atom RMSD. When DOCKed conformations are rescored with the implicit solvent models AMBER generalized Born with solvent-accessible surface area (GB/SA) and Poisson-Boltzmann with solvent-accessible surface area (PB/SA) in combination with explicit water molecules and sodium counterions, the success rate increases to 80% with PB/SA for less than seven rotatable bonds and 58% with AMBER GB/SA and 47% with PB/SA for less than 13 rotatable bonds. These results indicate that DOCK can indeed be useful for structure-based drug design aimed at RNA. Our studies also suggest that RNA-directed ligands often differ from typical protein-ligand complexes in their electrostatic properties, but these differences can be accommodated through the choice of potential function. In addition, in the course of the study, we explore a variety of newly added DOCK functions, demonstrating the ease with which new functions can be added to address new scientific questions.


Assuntos
RNA/química , Software , Algoritmos , Sítios de Ligação , Ligantes , Modelos Moleculares , RNA/metabolismo
8.
BMC Bioinformatics ; 7: 339, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16836757

RESUMO

BACKGROUND: Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a) provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b) facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit); (c) can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d) interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. RESULTS: The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. CONCLUSION: The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is available for Microsoft Windows, Apple Mac OS X, Linux, and other platforms from http://www.cgl.ucsf.edu/chimera.


Assuntos
Bases de Dados de Proteínas , Modelos Químicos , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Interface Usuário-Computador , Gráficos por Computador , Simulação por Computador , Sistemas de Gerenciamento de Base de Dados , Modelos Moleculares , Reconhecimento Automatizado de Padrão/métodos , Conformação Proteica , Proteínas/classificação , Proteínas/genética , Proteínas/ultraestrutura , Relação Estrutura-Atividade , Integração de Sistemas
9.
J Comput Chem ; 25(13): 1605-12, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15264254

RESUMO

The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/.


Assuntos
Modelos Moleculares , Alinhamento de Sequência , Software , Sequência de Aminoácidos , Gráficos por Computador , Conformação Molecular , Dados de Sequência Molecular , Pesquisa , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...